Abstract

Electroless nickel coating is a novel method of coating which can be developed in various combinations of alloys and composites each having its unique set of characteristics. Electroless nickel coatings are mainly used for wear and corrosion resistant properties. However, additional characteristics like smoothness of deposit, low friction, descent plating rate, electrical and magnetic properties also make them suitable for a host of applications. The properties of electroless nickel coatings depend mainly on the electroless solution ingredients as well as deposition conditions. Important deposition parameters include bath temperature, concentration of nickel source, concentration of reducing agent, pH of the solution, concentration of surfactants, and so on. Moreover, heat treatment is found to modify the microstructure of the coating and influence certain properties viz. hardness, wear resistance, corrosion resistance, etc. A large number of works have been published by the researchers on the evaluation of electroless nickel coating performance on the basis of hardness, roughness, corrosion resistance, friction and wear resistance for various types of coatings and substrates. Several approaches are proposed in the literatures to solve the problems related with optimization of these parameters. It is felt that a review of the various approaches developed would help to compare their main features and their relative advantages or limitations which will enable to choose the most suitable approach for a particular application and also throw light on aspects that needs further attention. In this regard, the present paper presents a review on the developments done on the optimization of electroless nickel coatings to increase its efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call