Abstract

Increasing energy demands call for sustainable alternative sources. Solid state fermentation (SSF) of raw oil palm frond leaves (OPFL) as the substrate to produce extracellular cellulases and xylanase by a novel Rhizopus oryzae UC2 (GenBank accession no. MF767597) was optimized. Optimum SSF conditions (30 °C, 40% moisture content, 2.0 × 108 spores/g inoculum size) yielded the maximum carboxymethyl cellulase (CMCase) (94.68 U/g), filter paperase (FPase) (25.46 U/g), β-glucosidase (145.47 U/g) and xylanase (213.99 U/g) activities, showing a broad pH range of between 6.0 and 12.0. Proteome analysis of crude enzyme cocktail revealed three β-glucosidases, as well as one endo-β-1,4-glucanase, exoglanase and endo-β-1,4-xylanase each. Activities of the enzyme complex were maximal at an acidic pH and temperature that ranged between pH 3.0–5.0 and 50–60 °C, respectively. In situ hydrolysis of OPFL released various concentrations of sugars viz. glucose (26.74 mg/g), xylose (1.44 mg/g), fructose (50.8 mg/g) and cellobiose (58.31 mg/g). Moreover, CMCase, FPase, β-glucosidase and xylanase exhibited half-lives of 5.13, 1.48, 18.81, 9.23 h when incubated at 60 °C, respectively. Thus, the desirable qualities of R. oryzae UC2 seen here supported its prospective biocatalytic role for timely and safe production of digestible carbohydrates from agro-industrial biomass for the subsequent biotransformation into biofuel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.