Abstract

ObjectiveThe primary aim of the study is to augment the biogas production from flower waste through optimization and pretreatment techniques. MethodsEnhancement of biogas production by using response surface methodology (RSM) and artificial neural network (ANN) was done. The time for agitation, the concentration of the substrate, temperature and pH were considered as model variables to develop the predictive models. Pretreatment of withered flowers was studied by using physical, chemical, hydrothermal and biological methods. ResultsThe linear model terms of concentration of substrate, temperature, pH, and time for agitation had effects of interaction (p < 0.05) significantly. From the ANN model, the optimal parameters for the biogas production process increased when equaled to the model of RSM. It indicates that the artificial neural network model is predicting the yield of biogas efficiently and accurately than the RSM model. Chemical pre-treatments were found to enhance the biogas production from flower waste with higher biomethane kinetics and cumulative yield. ConclusionBiogas production was significantly improved with statistical optimization and pretreatment techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.