Abstract

Fuzz testing is the process of testing programs by continually producing unique inputs in order to detect and identify security flaws. It is often used in vulnerability mining. The most prevalent fuzzing approach is grey-box fuzzing, which combines lightweight code instrumentation with data-feedback-driven generation of fresh program input seeds. AFL (American Fuzzy Lop) is an outstanding grey-box fuzzing tool that is well known for its quick fork server execution, dependable genetic algorithm, and numerous mutation techniques. AFLGO proposes and executes power scheduling based on a simulated annealing process for a more appropriate energy allocation to seeds, however it is neither reliable nor successful. To tackle this issue, we offer an energy-dynamic scheduling strategy based on the algorithm of the fruit fly. Adjusting the energy of the seeds dynamically controls the production of test cases. The findings demonstrate that the approach suggested in this research can test the target region more rapidly and thoroughly and has a high application value for patch testing and vulnerability replication.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.