Abstract

This study aims to simultaneously forecast and investigate the optimization process characterization of the design of controlled parameters in the injection process of polypropylene molding including injection pressure combination, clamping force, injection temperature, injection speed, and holding time, and their interaction to produce qualified plastic by minimizing defects. The experimental methods used the central composite design of response surface method with five factors and a variety of levels. This method is more effective because it is an improvement on and a development from previous studies—especially those related to the plastic molding process. Additionally, it can simultaneously predict and optimize the obtaining of the highest quality plastic products as well as minimizing defects. The results are in the form of a combination of control level factors and interactions among the factors that generate the robust output of plastic products with minimum defects. Moreover, the optimum settings of the parameters provides a global solution at an injection temperature of 275°C, injection pressure of 75 bar, injection speed of 98%, clamping force of 88 tons, and a holding time of 8 seconds to generate a response to product probability defects by 0.0062. The benefit is that it can reveal the behavior and characteristics of parameter design and their interactions in the plastic injection molding process to produce qualified plastics and minimize product defects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call