Abstract

Adsorbent Fe3O4/chitosan was successfully synthesized for the removal of microcystin-LR and characterized by Scanning electron microscope, Fourier transform infra-red, thermogravimetric analysis and vibrating sample magnetometer. The effects of reaction conditions, including pH, temperature and ratio of Fe3O4 to chitosan on microcystin-LR adsorption capacity were investigated by the Box-Behnken response surface methodology design, and the optimal adsorption conditions were determined. The adsorption properties of microcystin-LR were examined by adsorption kinetics, isothermal and thermodynamics experiments. The results demonstrated that Fe3O4/chitosan was successfully prepared and the maximum adsorption capacity of microcystin-LR was under optimum conditions in which pH value was 5.53, temperature was 40 °C and the ratio of Fe3O4 to chitosan was 1:1.39. The data revealed that kinetics was fitted well with the pseudo-second-order model, Langmuir isotherm model was more appropriate for describing than the Freundlich isotherm model and the adsorption of microcystin-LR was a spontaneous process. The material maintained good adsorption capacity after five cycles. The results suggested that Fe3O4/chitosan was an efficient and low-cost adsorbent for removing microcystin-LR from polluted water.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.