Abstract

MOS-triggered silicon-controlled rectifier (SCR) devices have been reported to achieve efficient on-chip electrostatic discharge (ESD) protection in deep-submicrometer CMOS technology. The channel length of the embedded MOS transistor in the MOS-triggered SCR device dominates the trigger mechanism and current distribution to govern the trigger voltage, holding voltage, on resistance, second breakdown current, and ESD robustness of the MOS-triggered SCR device. The embedded MOS transistor in the MOS-triggered SCR device should be optimized to achieve the most efficient ESD protection in advanced CMOS technology. In addition, the layout style of the embedded MOS transistor can be adjusted to improve the MOS-triggered SCR device for ESD protection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call