Abstract
.Pattern design transfer is the most crucial step in fabrication. Even a small mistake in fabrication can result in device damage or poor performance. To ensure the device performs perfectly, exact design and dimension pattern should be perfectly transferred onto wafer substrate. In this paper, optimization of conventional photolithography process of 0.98μm gap design for micro gap biosensor application is presented. The micro gap pattern on chrome mask is used and the effect of coating profile, UV light, and Post Exposure Bake (PEB) process are investigated. The conventional photolithography process (using a micro gap mask) starts after the silicon oxide, polysilicon and aluminium have been deposited on top of the substrate. Each set of experiment conducted by pairing the element investigated coating profile, UV light, and PEB, with the normal specification of photolithography process. It was observed that 0.98μm gap size can be achieved by choosing suitable process parameters i.e. thickness of coating profile, time and temperature used for UV light and PEB.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.