Abstract

BackgroundProtoberberine alkaloids are bioactive molecules abundant in plant preparations for traditional medicines. Yeast engineered to express biosynthetic pathways for fermentative production of these compounds will further enable investigation of the medicinal properties of these molecules and development of alkaloid-based drugs with improved efficacy and safety. Here, we describe the optimization of a biosynthetic pathway in Saccharomyces cerevisiae for conversion of rac-norlaudanosoline to the protoberberine alkaloid (S)-canadine.ResultsThis yeast strain is engineered to express seven heterologous enzymes, resulting in protoberberine alkaloid production from a simple benzylisoquinoline alkaloid precursor. The seven enzymes include three membrane-bound enzymes: the flavin-dependent oxidase berberine bridge enzyme, the cytochrome P450 canadine synthase, and a cytochrome P450 reductase. A number of strategies were implemented to improve flux through the pathway, including enzyme variant screening, genetic copy number variation, and culture optimization, that led to an over 70-fold increase in canadine titer up to 1.8 mg/L. Increased canadine titers enable extension of the pathway to produce berberine, a major constituent of several traditional medicines, for the first time in a microbial host. We also demonstrate that this strain is viable at pilot scale.ConclusionsBy applying metabolic engineering and synthetic biology strategies for increased conversion of simple benzylisoquinoline alkaloids to complex protoberberine alkaloids, this work will facilitate chemoenzymatic synthesis or de novo biosynthesis of these and other high-value compounds using a microbial cell factory.Electronic supplementary materialThe online version of this article (doi:10.1186/s12934-015-0332-3) contains supplementary material, which is available to authorized users.

Highlights

  • Protoberberine alkaloids are bioactive molecules abundant in plant preparations for traditional medicines

  • The expression cassettes for the methyltransferases Ps6OMT, PsCNMT, and Ps4′OMT and the cytochrome P450 reductase CPR were chromosomally integrated, TfS9OMT and TfCAS were expressed from a high-copy plasmid (HCP), and PsBBE was expressed from a second HCP

  • The best yields were obtained by using enzymes from a variety of plant sources and combining yeast artificial chromosome (YAC), chromosome, and high-copy plasmid-based expression

Read more

Summary

Introduction

Protoberberine alkaloids are bioactive molecules abundant in plant preparations for traditional medicines. Yeast engineered to express biosynthetic pathways for fermentative production of these compounds will further enable investigation of the medicinal properties of these molecules and development of alkaloid-based drugs with improved efficacy and safety. We describe the optimization of a biosynthetic pathway in Saccharomyces cerevisiae for conversion of rac-norlaudanosoline to the protoberberine alkaloid (S)-canadine. Alkaloids are nitrogen heterocycle-containing metabolites derived from amino acids. Alkaloids have wide-ranging chemical structures and bioactivities. Benzylisoquinoline alkaloids (BIAs) are a structural class of l-tyrosine derived plant alkaloids, including morphinan, protoberberine, and benzophenanthridine alkaloids. Protoberberine alkaloids occur in at least thirteen families of flowering plants, with the barberry, moon seed, poppy, and buttercup families comprising the most researched natural producers of these molecules [1].

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call