Abstract

BackgroundXylanase has long been recognized as a widely used industrially important enzyme. There are some bacterial species already reported to produce xylanase which have potent xylanolytic activity towards the use of this enzyme in the production of bioethanol from lignocellulosic biomass. In this view, an efficient xylanolytic bacterial strain was isolated and screened from the soil sample of Simlipal Biosphere Reserve. Enzymatic assay for the xylanase activity was evidenced from the most potent bacterial strain, and the culture condition was optimized for obtaining the maximum enzyme activity. The most potent xylanolytic strain was also identified using biochemical and molecular methods. ResultsNineteen xylanolytic bacteria (SXB1-SXB19) were isolated from Simlipal forest soil samples following dilution plate technique using corn cob xylan-enriched nutrient agar medium and screened for their xylanase-producing ability. Among these isolates, SXB19 showed maximum xylanolytic potential with a halozone size of 2.5 cm as evident in the formation of prominent yellow patches surrounding its growth in xylan-enriched nutrient agar plate. In unoptimized condition, SXB19 showed the highest enzymatic activity of 22.5 IU/ml among the 19 bacterial strains. In order to optimize the culture conditions for maximizing the xylanase production, Box-Behnken design of response surface methodology (RSM) was used. Four variables such as incubation time, pH, substrate (corn cob xylan) concentration, and temperature were considered for the RSM optimization study. From the results, it is evident that in an optimized condition of incubation time 36 h, pH 6.0, xylan concentration 0.5%, and temperature 42.5 °C, the enzyme activity reached a maximum of 152 IU/ml with nearly 6.75 times increase from the unoptimised condition. Besides, xylanase production from SXB19 was considerable in the presence of xylan followed by starch, nitrogen source such as urea followed by yeast extract, and mineral ion sources such as KCl followed by MgSO4 and ZnSO4. From different biochemical tests, 16S rRNA gene sequencing, and phylogenetic analysis, the bacterial strain SXB19 was identified as Pseudomonas mohnii. ConclusionThe isolation of Pseudomonas mohnii, a potent xylanolytic bacterium from Simlipal, is a new report which opens up an opportunity for industrial production of xylanase for bioethanol production and other applications. Graphical abstract▪

Highlights

  • IntroductionThere are some bacterial species already reported to produce xylanase which have potent xylanolytic activity towards the use of this enzyme in the production of bioethanol from lignocellulosic biomass

  • Xylanase has long been recognized as a widely used industrially important enzyme

  • Isolation and screening of xylanolytic bacteria A total of 19 xylanolytic bacteria were isolated from soil samples from Simlipal Biosphere Reserve, Odisha, using

Read more

Summary

Introduction

There are some bacterial species already reported to produce xylanase which have potent xylanolytic activity towards the use of this enzyme in the production of bioethanol from lignocellulosic biomass. In this view, an efficient xylanolytic bacterial strain was isolated and screened from the soil sample of Simlipal Biosphere Reserve. To maintain the sustainability of fuel demand and cleanliness of the environment, there is an urgent need of producing renewable and environment-friendly fuels [4] In this context, biofuel seems to be an alternative to fossil fuel which has reduced impact on environment pollution [5]. The global production and use of biofuels like bioethanol and biodiesel as the alternative energy source have shown to significantly promote in recent years among which only bioethanol covers 85%

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call