Abstract

ABSTRACTThis paper describes nondestructive x-ray characterization techniques which detect macroscopic and microscopic defects, determine the overall crystallographic perfection, and detect any unwanted secondary crystals both on the external surface as well as in the interior of single crystal blades. The method of Asymmetric Crystal Topography for diffraction imaging the surfaces of single crystal turbine blades and the method of White Beam Transmission Topography for diffraction imaging through the thickness of single crystal turbine blades are both discussed and illustrated with representive diffraction images (topographs). It is clear that the images gained from these methods have a capability for providing information about the details of crystalline perfection (or lack thereof) in nickel-based alloy single crystal turbine blades. Such information can provide considerable leverage for the crystal grower to help in adjusting processing variables to enhance quality of a critical product. And the same methods of topography can conceiveably provide tools for evaluating the finished product in a way which has not been available to date.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.