Abstract

Wireless sensor networks have been widely deployed in the last decades to provide various services, like environmental monitoring or object tracking. Such a network is composed of a set of sensor nodes which are used to sense and transmit collected information to a base station. To achieve this goal, two properties have to be guaranteed: (i) the sensor nodes must be placed such that the whole environment of interest (represented by a set of targets) is covered, and (ii) every sensor node can transmit its data to the base station (through other sensor nodes). In this paper, we consider the Minimum Connected k-Coverage (MCkC) problem, where a positive integer $$k \ge 1$$ defines the coverage multiplicity of the targets. We propose two mathematical programming formulations for the MCkC problem on square grid graphs and random graphs. We compare them to a recent model proposed by Rebai et al. (Comput Oper Res 59:11–21, 2015). We use a standard mixed integer linear programming solver to solve several instances with different formulations. In our results, we point out the quality of the LP-bound of each formulation as well as the total CPU time or the proportion of solved instances to optimality within a given CPU time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.