Abstract

The marine industry is highly dependent on oil as the fuel and the increased consumption of this fast-depleting oil recourse creates a shortage of fuel for the future as well as pollutes the environment. The pollution of water bodies also seriously affects marine life. Thus, the need for an alternate sustainable fuel source is of great importance. One such feasible alternative energy source is wind energy. The abundance, free availability and ease of conversion make it an ideal alternative to oil. Wind energy can be extracted by wind turbines or by sails. The sails convert the wind energy directly into energy for propulsion. The challenge in the conversion is the relative angle of attack of wind on the sail. The wind cannot be expected to be always in the direction of the course of the ship. When the wind is at an angle to the direction of the course, the thrust in the course director will be reduced and a component of thrust is developed on the sail which shifts the course of the ship. Bringing the ship back to the original course will create an additional expenditure of fuel. In such circumstances modification of the sail section shape from its conventional form to an optimal form helps to reduce these deficiencies. Therefore, the effort here is to numerically analyze the aerodynamic characteristics of wing-sails and to optimize their shape. The aerofoil NACA 0018 used here was chosen through a high fidelity two-dimensional computational analysis which was done earlier. The tip of the NACA 0018 was further modified by tilting it through different angles and at different chord positions forming a flap. The main objective of the study is to optimize the angle and the position of the flap relative to the chord of the aerofoil. The flapped airfoils were formed by modifying them from 10% chord length to 60% chord length. That flap angle was also varied from 0 degrees to 50 degrees in steps of 10- deg. The angle of attack on the sail was varied from 0 to 10 degrees in steps of 2 degrees. The thrust in the direction of course and the lateral thrust of each of these sail sections were estimated, tabulated and graphs were plotted. Analyzing these, an optimum shape for the sail section is derived.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call