Abstract

Water distribution for open-channel irrigation networks is more and more complex due to increasing constraints on water resources and changing demand patterns, whereas the performance of such systems is expected to increase. In this regard, an optimization approach is developed in order to schedule a fair scenario of water distribution among different users, where water demand is formulated in term of start time, duration and flow rate. This study investigates how to optimize the water distribution over a finite scheduling horizon while respecting the constraints linked to the system. The optimization approach forces the scheduled start time and the volume to be closer to the demanded ones, to minimize water losses and to reduce manpower. The constraints take into account the flow routing processes, the physical infrastructure, the available water resource, and the gate keeper timetable. The numerical resolution is done by using an optimization software IBM-Ilog Cplex. The method is then illustrated with the scheduling of off-take withdrawals for a typical traditional open-channel network: a lateral canal of the Gignac canal, in southern France.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.