Abstract

Massively parallel sequencing (MPS)-based virus detection has potential regulatory applications. We studied the ability of one of these approaches, based on degenerate oligonucleotide primer (DOP)-polymerase chain reaction (PCR), to detect viral sequences in cell lines known to express viral genes or particles. DOP-PCR was highly sensitive for the detection of small quantities of isolated viral sequences. Detected viral sequences included nodavirus, bracovirus, and endogenous retroviruses in High Five cells, porcine circovirus type 1 and porcine endogenous retrovirus in PK15 cells, human T-cell leukemia virus 1 in MJ cells, human papillomavirus 18 in HeLa cells, human herpesvirus 8 in BCBL-1 cells, and Epstein–Barr Virus in Raji cells. Illumina sequencing (for which primers were most efficiently added using PCR) provided greater sensitivity for virus detection than Roche 454 sequencing. Analyzing nucleic acids extracted both directly from samples and from capsid-enriched preparations provided useful information. Although there are limitations of these methods, these results indicate significant promise for the combination of nonspecific PCR and MPS in identifying contaminants in clinical and biological samples, including cell lines and reagents used to produce vaccines and therapeutic products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.