Abstract

Springback is one of the major defects in sheet metal forming. Variable blank holder force (VBHF) approach is one of the effective ways for the springback reduction. In this paper, the VBHF trajectory is optimized to reduce the springback by a sequential approximate optimization (SAO) with radial basis function (RBF) network. The U-shaped forming in NUMISHEET'93 is employed to determine an optimum VBHF trajectory, for example. In this paper, the bending moment is taken as the objective function. The tearing of sheet during the forming is considered as the design constraint, and the forming limit diagram (FLD) is employed to evaluate the design constraint quantitatively. It has been found from numerical results that the optimal VBHF trajectory can drastically reduce the springback in comparison with various VBHF trajectories. Through the theoretical examination and numerical simulation, the springback reduction of metal forming by the VBHF trajectory is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.