Abstract

Vehicular Ad-hoc Networks is one of the emerging research areas of Mobile adhoc network. One of the key problems of VANET is changing topology of vehicles which leads to frequent disconnections. Therefore, for communication among the running vehicles, routing of the message becomes a challenging problem. Although, many routing protocols have been proposed in the literatures, but the performance of these protocols, in different scenarios, depends on the value of parameters used in. The objective of our work is to find best fitness function value for Ad-hoc on demand multipath distance vector routing protocol, in real scenario map by obtaining an optimal value of parameters using Magnetic Optimization Algorithm. Therefore, in this paper, we have proposed an algorithm based on Magnetic Optimization Algorithm which finds the optimal value of parameters for Ad-hoc on demand multipath distance vector routing protocol in a given scenario. The fitness function guides Magnetic Optimization Algorithm to achieve the best fitness value. The experimental results, using the optimal value of parameters obtained by Magnetic Optimization Algorithm, show 81.41% drop in average end-to-end delay, 39.24 % drop in Normalized Routing Loads, and slight rise (0.77%) in the packet delivery ratio as compared to using default value of parameters in Ad-hoc on demand multipath distance vector routing protocol.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.