Abstract

We present the design, fabrication, characterization, and optimization of a TPM (twin parallel microstrip)-based nuclear magnetic resonance (NMR) probe, produced by using a low-loss Teflon PTFE F4B high frequency circuit board. We use finite element analysis to optimize the radio frequency (RF) homogeneity and sensitivity of the TPM probe jointly for various sample volumes. The RF homogeneity of this TPM planar probe is superior to that of only a single microstrip probe. The optimized TPM probe properties such as RF homogeneity and field strength are characterized experimentally and discussed in detail. By combining this TPM based NMR probe with microfluidic technology, the sample amount required for kinetic study using NMR spectroscopy was minimized. This is important for studying costly samples. The TPM NMR probes provide high sensitivity to analysis of 5 µl samples with 2 mM concentrations within 10min. The miniaturized microfluidic NMR probe plays an important role in realizing down to seconds timescale for kinetic monitoring.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call