Abstract

In this work, an attempt has been made to optimize the process parameters on turning operation of INCOLOY 800H, with the aid of cryogenically treated (24[Formula: see text]h, 12[Formula: see text]h and untreated) multi-layer chemical vapor deposition (CVD) coated tools. The influencing factors like cutting speed, feed rate, depth of cut and cryogenic treatment were selected as input parameters. Surface roughness, microhardness and material removal rate (MRR) were considered as output responses. The experimentation was planned and conducted based on Taguchi L27 standard orthogonal array (OA) with three levels and four factors. Multi-criteria decision making (MCDM) methods like grey relational analysis (GRA) and technique for order preference by similarity to ideal solution (TOPSIS) have been used to optimize the turning parameters in this work. Similar results were obtained from these MCDM techniques. Analysis of variance (ANOVA) was employed to identify the significance of the process parameters on the responses. Experimental research proved that machining performance could be improved efficiently at cutting speed is 55[Formula: see text]m/min, feed rate is 0.06[Formula: see text]mm/rev, depth of cut is 1[Formula: see text]mm and 24[Formula: see text]h cryogenically treated tool. Tool wear was analyzed for the cutting tool machined at the optimum cutting condition with the help of scanning electron microscope (SEM) and energy dispersion spectroscopy (EDS). Dry sliding wear test was also conducted for the optimal condition. The percentage improvement in machining performances is 12.70%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call