Abstract

AbstractA design procedure for integrating topological considerations in the framework of structural optimization is presented. The proposed approach is capable of considering multiple load conditions, stress, displacement and local/global buckling constraints, and multiple objective functions in the problem formulation. Further, since the proposed method permits members to be added to or deleted from an existing topology and the topology is not defined by member areas, the difficulty of not being able to reach singular optima is also avoided. These objectives are accomplished using a discrete optimization procedure which uses 0–1 topological variables to optimize alternate designs. Since the topological variables are discrete in nature and the member cross‐sections are assumed to be continuous, the topological optimization problem has mixed discrete‐continuous variables. This non‐linear programming problem is solved using a memory‐based combinatorial optimization technique known as tabu search. Numerical results obtained using tabu search for single and multiobjective topological optimization of truss structures are presented. To model the multiple objective functions in the problem formulation, a cooperative game theoretic approach is used. The results indicate that the optimum topologies obtained using tabu search compare favourably, and in some instances, outperform the results obtained using the ground–structure approach. However, this improvement occurs at the expense of a significant increase in computational burden owing to the fact that the proposed approach necessitates that the geometry of each trial topology be optimized.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.