Abstract

The article describes the method of determining the optimal capacity of the traction battery of a trolleybus with autonomous travel depending on the share of the route without a catenary. In modern cities, there is often a situation in which on some sections of trolleybus routes for various reasons there is no contact network for trolleybus traffic. The solution to the problem of ensuring the movement of trolleybuses on such routes may be the use of autonomous trolleybuses, which use the energy of the traction battery (TAB). The battery may be partially or fully recharged while the trolleybus is running on mains power. In case of incomplete charging of the battery while driving on the route, the TAB can receive a full charge during the sludge of the trolleybus in the park after the change at the night rate, which is usually less than the day rate for electricity. The optimal capacity of the traction battery in such conditions corresponds to the minimum cost of energy and equipment for trolleybus traffic, depends on the size of the route without a catenary, the physical capacity of the network to charge the battery, and the ratio of day and night electricity tariffs. Determining the optimal capacity of TAB for operation on routes where there is no contact network is an important task. The article shows that the minimum capacity of the TAB Етаб should be such as to ensure the movement of the trolleybus on the site without a catenary. In this case, there is a value of the share of the route without a catenary, at which the TAB can be fully charged from the network when moving on the section with the network. Further, when increasing the share of the route without a catenary, the TAB of the trolleybus needs to be recharged either at the end of the route or after the change in the depot or sludge point and a corresponding increase in the required capacity of the TAB by the amount of undercharging. In this case, it may be more cost-effective to charge the TAB using the night rate, which is usually much lower than the day rate. It is determined that in terms of the cost of electricity per movement when charging TAB at the night rate, the use of an electric bus can be more cost-effective compared to an autonomous trolleybus, especially in the complete absence of a catenary. The method does not take into account energy losses in accordance with the factors of operation climatic conditions as well as the efficiency of chargers and associated automatic control, the design possibility of energy recovery on the route, the load of the trolleybus during the work shift, which requires a separate study. The results of the article can be used when autonomous trolleybuses production. Projected assumptions about the development of the object of study – further research should be aimed at a detailed study of the impact of all components of the vehicle on the cost of its operation in different conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.