Abstract

Waveform relaxation techniques have become increasingly important with the wide availability of parallel computers with a large number of processors. A limiting factor for classical waveform relaxation, however, is the convergence speed for an important class of problems, especially if long time windows are considered. In contrast, the optimized waveform relaxation algorithm discussed in this paper is well suited to address this problem. Today several numerical analyses have shown that optimized waveform relaxation algorithms can overcome slow convergence over long time windows. However, the optimized waveform relaxation techniques require the determination of optimized parameters. In this paper, we present a theoretical foundation for the determination of the optimized parameters for an important class of RC circuits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.