Abstract

When a compression wave generated by a high-speed train entering a tunnel propagates through the tunnel and arrives at the tunnel exit, an impulsive pressure wave (micro-pressure wave) is radiated from the tunnel exit. Improving the train nose shape is one of the techniques for suppressing the micro-pressure wave. Furthermore, tunnel entrance hoods are required for long concrete slab tunnels in order to suppress the micro-pressure wave. The effect of the tunnel entrance hood on the compression wave generated by the train can be evaluated by means of a rapid computational scheme devised and validated experimentally by Howe et al. In this study, the optimal longitudinal distribution of the cross-sectional area of the train nose shape was determined by using the rapid computational scheme and a genetic algorithm. The effect of the nose shape optimization was confirmed through experiments using scale models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call