Abstract
Silicon carbide particle-reinforced aluminum matrix (SiCp/Al) composites are significant lightweight metal matrix composites extensively utilized in precision instruments and aerospace sectors. Nevertheless, the inclusion of rigid SiC particles exacerbates tool wear in mechanical machining, resulting in a decline in the quality of surface finishes. This work undertakes a comprehensive investigation into the problem of tool wear in SiCp/Al composite materials throughout the machining process. Initially, a comprehensive investigation was conducted to analyze the effects of cutting velocity vc, feed per tooth fz, milling depth ap, and milling width ae on tool wear during high-speed milling under SCCO2-MQL (Supercritical Carbon Dioxide Minimum Quantity Lubrication) ultrasonic vibration conditions. The results show that under the condition of SCCO2-MQL ultrasonic vibration, proper control of milling parameters can significantly reduce tool wear, extend tool service life, improve machining quality, and effectively reduce blade breakage and spalling damage to the tool, reduce abrasive wear and adhesive wear, and thus significantly improve the durability of the tool. Furthermore, a prediction model for tool wear was developed by employing the orthogonal test method and multiple linear regression. The model’s relevance and accuracy were confirmed using F-tests and t-tests. The results show that the model can effectively predict tool wear, among which cutting velocity vc and feed rate fz are the key parameters affecting the prediction accuracy. Finally, a genetic algorithm was used to optimize the milling parameters, and the optimal parameter combination (vc = 60.00 m/min, fz = 0.08 mm/z, ap = 0.20 mm) was determined, and the optimized milling parameters were tested. Empirical findings suggest that the careful selection of milling parameters can significantly mitigate tool wear, extend the lifespan of the tool, and enhance the quality of the surface. This work serves as a significant point of reference for the processing of SiCp/Al composite materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.