Abstract

The lower machining time is important characteristic in the drilling machining process. Drilling process costs will increase if the machining time is high. Therefore, the main objective of this research is to develop Ant Colony Algorithm (ACO) to reduce the machining time by obtain the optimal tool path length. By using this algorithm, it can minimize the tool path length and significantly decreasing the machining time of drilling process. Simulating in 3-dimensional drilling on ACO has been constructed to minimize the shortest path of the drilling process. There are two type of workpiece has been used, which is simple block with 10 holes and complex block design that has 154 holes. ACO algorithm has been developed in Matlab R2017b to determine the optimal parameters of ACO of tool path length in drilling. Besides, simulation also has been done to investigate the effect of ACO parameter which is weight of pheromone (α), weight of trail (β), evaporation coefficient (e), and number of iterations. As a result, by define the parameter of iteration number at 900, the optimum parameter of weight of pheromone (α) is 5, weight of trail (β) is 4 and evaporation coefficient (e) is 0.4. Based on these parameters, the minimal tool path length obtain for simple and complex model are 286.965 mm and 6770.9860 mm respectively. Then, the result of tool path length of ACO simulation has been compared with the Mastercam outcome. ACO achieves a total tool path length of 286.965 mm while Mastercam achieved 569.878 mm for simple block design. Meanwhile, for complex block design, ACO produces a total tool path length of 6770.9860 mm while Mastercam has generate 55828.9050 mm of tool path length. By comparing these two approaches, ACO and Mastercam, ACO has that the short total tool path length by 49.64% on simple block design and 87.87% for complex block design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call