Abstract

A numerical optimization procedure for the shape of three-dimensional channel with angled ribs mounted on one of the walls to enhance turbulent heat transfer is presented. The response surface based global optimization with Reynolds-averaged Navier-Stokes analysis of fluid flow and heat transfer is used. Shear stress transport (SST) turbulence model is used as a turbulence closure. Computational results for local heat transfer rate show a reasonable agreement with the experimental data. The pitch-to-height ratio of the rib and rib height-to-channel height ratio are set to be 9.0 and 0.1, respectively, and width-to-rib height ratio and attack angle of the rib are chosen as design variables. The objective function is defined as a linear combination of heat-transfer and friction-loss related terms with the weighting factor. Full-factorial experimental design method is used to determine the data points. Optimum shapes of the channel have been obtained in the range from 0.0 to 0.1 of the weighting factor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call