Abstract

In this study, we optimized thick airfoils for wind turbines using a genetic algorithm (GA) coupled with computational fluid dynamics (CFD) and geometric parameterization based on the Akima curve fitting method. Complex and separated flow fields around the airfoils of each design generation were obtained by performing Reynolds-averaged Navier-Stokes steady flow simulation based on the in-house code of an implicit high-resolution upwind relaxation scheme for finite volume formulation. Airfoils with 40 % and 35 % thickness values were selected as baseline airfoils. An airfoil becomes thicker toward the blade root area, thereby increasing blade stiffness and lowering its aerodynamic efficiency. We optimized the airfoils to simultaneously maximize aerodynamic efficiency and blade thickness. The design variables and objective function correspond to the airfoil coordinates and the lift-to-drag ratio at a high angle of attack with airfoil thickness constraints. We improved the lift-to-drag ratio by 30 %~40 % compared with the baseline airfoils by performing optimization using GA and CFD. The improved airfoils are expected to achieve a 5 %~11 % higher torque coefficient while minimizing the thrust coefficient near the blade root area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.