Abstract

AbstractThe thermoelectric properties of Ni1-xCux (0<x<1) alloy are measured from 323K to 950K. The sample with optimized composition, Ni70Cu30 is found to possess large power factor value of 0.012 Wm−1K−2 at around 950K. Estimated figure of merit value ZT is 0.21 for Ni50Cu50 and 0.18 for Ni70Cu30 at the same temperature. A novel attempt of high-throughput parallel synthesis using multiple-wells is carried out to test the feasibility of combinatorial approach in this material system. The Seebeck coefficient is visualized over the multiple-wells combinatorial library and the other Ni-Cu composition-spread, and it is proved that further enhancement of throughput could be possible by conducting systematic experiments based on the combinatorial approaches performed in this study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call