Abstract

The thermoelectric properties at elevated temperature were investigated for n-type Bi2(Te,Se)3 which is obtained from ball milling processed powder with various milling times. Electrical properties such as electrical resistivity and Seebeck coefficient are clearly dependent on milling time, in which the carrier concentration is attributed to the change of the electrical properties. The concentrations of the defects are also varied with the ball milling time, which is the origin of the carrier concentration variation. Even though finer grain sizes are obtained after the long ball milling time, the temperature dependence of the thermal conductivity is not solely understood with the grain size, whereas the electrical contribution to the thermal conductivity should be also considered. The highest figure of merit value of ZT = 0.83 is achieved at 373 K for the optimized samples, in which ball milling time is 10 h. The obtained ZT value is 48% improvement over that of the 0.5-h sample at 373 K.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call