Abstract

Component optimization studies during the last twenty years, point to the use of carefully optimized ground source heat pump systems as a means of reducing building heating and cooling energy costs. Modern computational tools enable building energy simulation with a time step of the order of minutes. This allows improved insight in the building HVAC system’s transient operation and may affect the form of the objective functions employed in the component optimization procedure. In this paper, the yearly performance of a 3-zone residential building located in Volos, Greece, equipped with a conventional chiller–boiler system, compared to that of an alternative, ground source heat pump system, are simulated in the TRNSYS 16 environment. Comparative year-round simulations are employed to demonstrate the expected transient and overall energy balance effects of control settings, chiller or heat pump COP characteristics, equipment sizing and other design parameters. It is concluded that detailed simulation of the HVAC system operation further improves our understanding of its transient operation. Furthermore, it allows more realistic system’s sizing, better assessment of the effect of control settings, chiller or heat pump COP characteristics and other design parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.