Abstract

Adsorbent bed design and performance strongly affect the overall performance of adsorption systems. In the present study, an analytical model was developed to determine the optimum geometrical and thermal parameters of a flat tube-fin adsorbent bed to reach the maximum system performance. This types of heat exchangers offer substantial reduced in weight, cost, volume and thermal conductivity, which can make them a good choice for adsorbent beds in automobile applications. Results showed that the overall thermal conductance of the bed and the maximum practical specific cooling capacity increased when reducing in flat tube thickness and fin pitch as well as by increasing in fin thickness and water channel wall thickness. The specific thermal conductance increased by 2.5% when reducing the channel pitch from its design value to a minimum permissible (0.004m). From thermal parameters that have been studied, the adsorbent thermal conductivity is the most sensitive parameter to the specific thermal conductance in beds. The system performance also significantly enhanced by reducing the mass of the metal bed and the heat transfer fluids as well as the desorption heat of the selecting working pair.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.