Abstract

The nitinol-60 shape memory alloy has been rated as the most widely utilized material in real-life industrial applications, including biomedical appliances, coupling and sealing elements, and activators, among others. However, less is known about its optimization characteristics while taking advantage to choose the best parameter in a surface integrity analysis using the wire EDM process. In this research, the authors proposed a robust Taguchi-Pareto (TP)-grey wolf optimization (GWO)-desirability function analysis (DFA) scheme that hybridizes the TP method, GWO approach, and DFA method. The point of coupling of the TP method to the GWO is the introduction of the discriminated signal-to-noise ratios contained in the selected 80-20 Pareto rule of the TP method into the objective function of the GWO, which was converted from multiple responses to a single response accommodated by the GWO. The comparative results of five outputs of the wire EDM process before and after optimization reveals the following understanding. For the CR, a gain of 398% was observed whereas for the outputs named Rz, Rt, SCD, and RLT, losses of 0.0996, 0.0875, 0.0821, and 0.0332 were recorded. This discrimination of signal-to-noise ratio based on the 80-20 rule makes the research different from previous studies, restricting the data fed into the GWO scheme to the most essential to accomplishing the TP-GWO-DFA scheme proposed. The use of the TP-GWO-DFA method is efficient given the limited volume of data required to optimize the wire EDM process parameters of nitinol.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call