Abstract

An upper plenum of a PBMR type gas cooled nuclear reactor has been optimized using three-dimensional Reynolds-averaged Navier–Stokes (RANS) analysis and surrogate modeling technique. Shear stress transport turbulence model is used as a turbulence closure. Two geometric design variables viz., ratio of height of upper plenum to diameter of rising channels, and ratio of height of the slot at inlet to that at outlet, are used as design variables for the optimization. Design points are selected by Latin-hypercube sampling. The objective function is defined as a linear combination of uniformity of temperature distribution in the core and pressure drop through the upper plenum. The optimal point is determined through surrogate-based optimization method which uses RANS derived calculations at design points. The results show that the optimization improves considerably both the temperature uniformity and the friction performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.