Abstract

The tribological properties of synthesized hybrid reinforced aluminium matrix composites (AMCs) have been optimized in this study using Taguchi and grey relational analysis (GRA), methods where a L16 orthogonal array was used for the experimental design. Hybrid palm kernel shell ash (0–6 wt.%) and SiC (2 wt.%) formed the reinforcements of interest, which were combined in ratios ranging between 2 and 8 wt.%. Different loads (250, 500, 750, and 1000 g) and speeds (250, 500, 750, and 1000 rpm) were used as control factors. The wear samples were produced using the double-stir casting method, while a Taber type abrasion machine was used for the wear experiments. The evaluated wear index and volume loss showed that the speed and load were better influential factors on the performance characteristics of the composites than wt.% of reinforcements. The Taguchi-Grey's relational analysis gave the optimal combination of the process parameters for both the wear index and the volume loss as A3B1C1 (Reinforcement = 6 wt.%; Load = 250 g; Speed = 250 rpm) and A1B1C1 (Reinforcement = 2 wt.%; Load = 250 g; Speed = 250 rpm), respectively. The predicted and experimental values at the optimum conditions were confirmed to be within the range based on the performance of the confirmation test. The utilization of Taguchi and GRA methods have significantly confirmed that the influence of speed as a factor of performance was higher than load, which in turn was a better influencing factor than wt.% of reinforcements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call