Abstract
Abstract This study optimized biodiesel production by Monoraphidium sp. in terms of fatty acid methyl ester (FAME) yield by varying four variables (volume of methanol, reaction temperature, reaction time, and ultrasound power) using a Box-Behnken design (BBD). Within the experimental range, the volume of methanol was found to be the most important factor, having a positive influence on the FAME yield. The test variables affected the FAME yield, and the optimal condition varied between alkali- and acid-catalyzed transesterification. Both types of transesterification reaction occurred at their optimal catalyst concentrations, 0.5% NaOH and 2% H2SO4, respectively, for both dry and wet microalgal biomass. The FAME yield with the acid-catalyzed reaction was better than that with the alkali-catalyzed reaction. The combined alkali-and-acid-catalyzed transesterification reactions enhanced the FAME yield. The microalgae produced fatty acids, comprising mainly palmitic acid (C16:0), oleic acid (C18:1), linoleic acid (C18:2), and linolenic acid (C18:3), with palmitic acid (C16:0) and linoleic acid (C18:2) being the most abundant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.