Abstract
A method based on a modified electromagnetism-like with two-direction local search algorithm (MEMTDLS) and genetic algorithm (GA) is proposed to determine the optimal time of task scheduling for dual-robot manipulators. A GA is utilized to calculate the near-optimal task scheduling for both robots, and the MEMTDLS is recommended as a suitable alternative in obtaining multiple solutions at each task point for both manipulators with minimal error. During the course of the tour, the robots move from point to point with a short cycle time, while ensuring that no collision occurs between the two manipulators themselves or between the dual manipulators and the static obstacles in the workspace. The movement and the configurations of the manipulators at the task points were illustrated using a simulator that was developed via Visual Basic .Net. The method is verified using two simulators that are used as examples for two identical four-link planar robots that work in the environment, with square-shaped obstacles cluttered at different locations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.