Abstract
Obtaining accurate geotechnical thermal parameters is essential for the efficient use of geothermal energy because their accuracy directly affects the economy and reliability of a heat pump system. When determining geotechnical thermal property parameters using thermal response tests (TRTs), voltage fluctuations, uncertain test duration, and discard time are often encountered. Based on the linear source theory, the Fourier number (Fo) was selected as the reference standard in this study to accurately determine the most appropriate data discard time and test duration. Then, to obtain an accurate initial ground temperature (T0), a new cycling without power method was proposed and demonstrated to be accurate and feasible. The errors caused by voltage fluctuations during the test were handled by using data segmentation to select the best-fitted data for solving the thermal property parameters, with a good fitting accuracy (R2) of 0.996 and root mean square error (RMSE) as low as 0.006. The most accurate value of the comprehensive geotechnical thermal conductivity (λs) was determined to be 1.88 W/(m·°C). The thermal resistance (Rb) was determined to be 0.14 °C/W by combining T0 and parameters from model fitting. In conclusion, the test process and data processing should be considered to improve the accuracy of the TRT.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.