Abstract

Surface mechanical attrition treatment (SMAT), an efficient way to create nanostructured surface/subsurface layers, has been extensively exploited in the last decade. However, the impact velocity of the balls in the treatment has not yet been measured in detail. The motivation of the present paper was to investigate the ball velocity and the effect of the number of balls on the resulting mechanical properties and the associated microstructures. Employing a high-speed camera, the maximum impact velocities of balls were quantified. This velocity is affected by the density and size of the ball. In the present paper an optimum number of balls for SMAT was also identified. With a detailed knowledge of the ball velocity we were able to accurately estimate the strain rate at different depths by analytical modeling and to study the correlation between the resulting microstructures and the strain/strain rate history of the material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.