Abstract

Abstract Response surface methodology was used to optimize the spray-drying process for the development of stingless bee honey powder. The independent variables were: inlet air temperature (110–150 oC) and maltodextrin 10DE content (50–70 % wb). The responses were powder yield, moisture, volatiles retention, solubility time, hygroscopicity, bulk loose, and hydroxymethylfurfural content. Powder moisture content, solubility time, hygroscopicity and loose bulk density were negatively affected by inlet air temperature, while powder yield, volatiles retention and hydroxymethylfurfural content were directly related. Powder yield, volatiles retention and solubility time increased with the rise in maltodextrin content, while moisture content, hygroscopicity, loose bulk density and hydroxymethylfurfural content were negatively affected by maltodextrin content. Multiple response optimization indicated that an inlet air temperature of 150 oC and maltodextrin content of 61 % wb were predicted to provide 40 % powder yield, 4.9 % wb moisture content, 71 % volatiles retention, 242 s solubility time and 232 mg/kg hydroxymethylfurfural content.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.