Abstract

Due to its superior damping ratio, high adhesion and fast curing, polymer concrete is used in manufacturing bases for a wide range of precision machines. The coefficient of thermal expansion for polymer concrete is one of the main parameters that can affect the level of accuracy in precision tool machines. Flexural strength is a fundamental strength of the base. In this study six aggregates (basalt, spodumene, fly ash, river gravel, sand and chalk) were investigated. Polymer concrete samples were prepared with different compositions of aggregates containing the same resin volume fraction (aggregates 83% and risen 17%). A four points flexural test was employed to measure the flexural strength of the polymer concrete samples. The coefficient of thermal expansion for polymer concrete was measured using a custom built device. The preliminary optimum composition, with the highest flexural strength and lowest thermal expansion coefficient, was found to be basalt, spodumene and fly ash. Basalt, sand and fly ash composition was the second in the rank. The second composition was nominated for further optimization in terms of resin volume fraction in consideration of its ability to adapt a smaller amount of resin. Different samples of polymer concrete were prepared with a variety of resin volume fractions as follows; 17%, 15% and 13%. The resin volume fraction has been demonstrated to have a significant effect on the coefficient of thermal expansion and flexural strength for polymer concrete. The final optimized composition was basalt, sand and fly ash (filler 87% and resin 13%). ANSYS 13 software was employed in visualizing the influence of polymer concrete compositions on the thermal expansion of the base and how it affected the level of precision of the tool machine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call