Abstract

We solve the problem of video object segmentation by investigating how to expand the role of convolution in convolutional neural networks. Based on the One-Shot Video Object Segmentation (OSVOS) which can successfully tackle the task of semi-supervised video object segmentation, we introduce U-shape architecture. We first build a Global Guidance Module (GGM) on the bottom-up path to provide location information of potentially significant objects for layers of different feature levels. Then we design a Multi-scale Convolution Module (MCM) to fully get feature information and a Feature Fusion Module (FFM) to make the coarse-level semantic information well fused with the finelevel features from the top-down pathway. GGM and FFM allow the high-level semantic features to be progressively refined, yielding detail enriched segmentation maps. The experimental results on DAVIS 2016 data set shows that our proposed approach can more accurately locate the segmentation objects with sharpened details and our model has improved on all indicators than OSVOS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.