Abstract

Multi-Contingency Transient Stability Constrained Optimal Power Flow (MC-TSCOPF) models optimize the economic dispatch of power systems while ensuring their stability after a series of reference incidents. This paper proposes a MC-TSCOPF model that represents the power balance at each node of the system and at each sample time. The proposed model includes non-linear loads, synchronous generators, a windfarm, and a Flywheel Energy Storage system (FESS). The model is written on GAMS and solved using a standard Interior Point algorithm. This study focuses on the Fuerteventura-Lanzarote insular grid in Spain, where stability problems and load shedding cause high additional costs due to the low inertia of the system. A FESS has been recently installed in the system to improve its stability, taking advantage of its high-power capacity and rapid response. The proposed TSCOPF model has been applied to optimize the operation of the FESS to support stability in the event of a contingency. The results of the study show that 1) a proper model of non-linear loads is essential in TSCOPF studies; 2) the proposed MC-TSCOPF provides a tool for minimizing the generation costs while ensuring transient and frequency stability; and 3) it is possible to further reduce the generation costs by using the proposed model to calculate an optimal dynamic response of the FESS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call