Abstract

This study is intended for finding out the optimal processing parameters for needle punching nonwoven fabrics in order to work out its maximal strength. Taguchi method together with grey relational analysis is employed to resolve the problem as regards multiple-quality optimization, and further discover the optimal combination of processing parameters for needle punching nonwoven fabrics. Firstly, orthogonal array L18(21×37) is used to deal with the processing parameters that may exert influence over the manufacturing of needle punching nonwoven fabrics. Then grey relational analysis is applied to resolve the deficiency of Taguchi method that focus on single quality characteristic. Next, the response table of grey relational analysis is used to obtain the optimal combination of processing parameters for multiple quality characteristics. In the current experiment quality characteristic refers to the tensile strength and tear strength of the nonwoven fabrics. Additionally, signal-to-noise ratio (SN ratio) calculation and analysis of variance (ANOVA) can be adopted to explore the experimental results. Through ANOVA, the significant factors that exert comparatively significant influence over the quality characteristic of the needle punching nonwoven fabrics, that is, the control factors are determined so that the quality characteristic of the needle punching nonwoven fabrics can be effectively controlled. Finally, confirmation experiment is conducted within 95 % confidence interval to verify the experimental reliability and reproducibility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.