Abstract

Forest trees are renewable sources of timber and other valuable non-timber products. Nowadays, the increase in population and demand for forestry products results in overexploitation of forestry. Therefore, there is an urgent need to produce elite plants with higher productivity under stress derived from climate change to have available to afforestation. For this reason, propagation methods should be improved to be more efficient in terms of quality and productivity. The main species planted in the Basque Country is Pinus radiata; during the last three years, Pinus radiata plantations have suffered a fungus attack affecting mainly needles until the tree's death. This crisis is caused by the combined action of two fungi of the genus Dothistroma and Lecanosticta acicola, whose expansion seems to have been enhanced by weather-related factors, such as humid and hot summers. Although we have evidence of this disease's presence in our mountains since 1942, the disease has had a speedy expansion with an aggressive effect for reasons that are not scientifically known today. For the above, Basque Country forestry sector is looking for alternative species to be used in its plantations. Part of the forestry sector considers that Sequoia sempervirens could be a good choice for plantations. Besides, its high-quality wood and its tolerance to the attack of several pathogens and other diseases derived from climate change are characteristics that could confer some advantage over other forest species. The main goal of this study was to optimize the micropropagation of adult elite trees of Sequoia sempervirens. The effect of 6-benzylaminopurine, meta-Topolin and Kinetin, and 4 types of explant in the multiplication stage were analyzed to carry out this objective. Furthermore, the effect of two types of auxins: 1-naphthalene acetic acid, indole-3-butyric acid, and a mixture of both, were evaluated on the induction of roots and their subsequent effect on the acclimatization process. The best multiplication index was obtained when 4.4 µM 6-benzylaminopurine and apical explants longer than 1.5 cm of length were used. The root induction percentage was 75% in the most responsive genotype analyzed when 4.4 µM 6-benzylaminopurine was used on the induction stage, and 50 µM of 1-naphthalene acetic acid was used for rooting. Finally, after 3 months in the greenhouse, the explants cultured with Kinetin and rooted in a culture medium with indole-3-butyric acid showed the highest acclimatization success (94%).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call