Abstract

Response surface methodology (RSM) coupled with the central composite design (CCD) was used to optimize the mechanical properties of calcium phosphate cement/multi-walled carbon nanotubes/bovine serum albumin (CPC/MWCNTs/BSA) composites. In this study, CPC composites were reinforced by multi-walled carbon nanotubes (MWCNTs) and bovine serum albumin (BSA) in order to induce high mechanical properties in the CPC/MWCNTs/BSA system. The effect of various process parameters on the compressive strength of CPC/MWCNTs/BSA composites was studied using design of experiments (DOE). The process parameters studied were: wt.% of MWCNTs (0.2–0.5 wt.%), wt.% of BSA (5–15 wt.%) and type of MWCNTs (e.g. as-pristine MWCNT (MWCNT-AP), hydroxyl group functionalized MWCNT (MWCNT-OH) and carboxyl group functionalized MWCNT (MWCNT-COOH)). Based on the CCD, a quadratic model was obtained to correlate the process parameters to the compressive strength of CPC/MWCNTs/BSA composites. From the analysis of variance (ANOVA), the most significant factor affected on the experimental design response was identified. The predicted compressive strength after process optimization was found to agree well with the experimental value. The results revealed that at 0.5 wt.% of MWCNT-OH and 15 wt.% of BSA, the highest compressive strength of 14 MPa was obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.