Abstract

This study analyzed characteristics of road noise using vehicle tests and identified the 200–230Hz range as the most important frequency for road noise reduction. Moreover, vibration sources in the vehicle suspension system were identified through transfer path analysis and coherence analysis. Using a finite element model of a vehicle suspension system, sensitivity analysis was performed to determine sensitive design factors. In order to achieve noise reduction using sensitivity analysis, the lower arm of the vehicle suspension system was found to be the most important design variable. For design optimization, we employed a robust and efficient sequential approximate optimization method, named PQRSM (Progressive Quadratic Response Surface Method) suitable for solving practical design optimization problems. The estimates based on a model proposed from optimization were in accord with the results of the experiment and road noise reduction was achieved by applying the optimally designed lower arm of the vehicle suspension system to a real vehicle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call