Abstract
The complex non-linear processes in multi-dimensional parameter spaces, that are typical for an accelerator, are a natural application for machine learning algorithms. This paper reports on the use of Bayesian optimization for the optimization of the Injection Beam Line (IBL) of the Cooler Synchrotron storage ring COSY at the Forschungszentrum Jülich, Germany. Bayesian optimization is a machine learning method that optimizes a continuous objective function using limited observations. The IBL is composed of 15 quadrupoles and 28 steerers. The goal is to increase the beam intensity inside the storage ring. The results showed the effectiveness of the Bayesian optimization in achieving better/faster results compared to manual optimization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.