Abstract

Coke inhibition of reactor materials is one of the major research areas in the field of steam cracking. Selecting the optimal in situ pretreatment of a steam cracking coil depends on many different aspects such as the reactor material composition, the process conditions, the pretreatment duration, the atmosphere, and the used additives. Therefore, the effect of eight different pretreatments on the coking resistance of a classical Ni/Cr 35/25 high temperature alloy is evaluated in a thermogravimetric setup with a jet stirred reactor under industrially relevant ethane steam cracking conditions (dilution 0.33 kg H2O/kg C2H6, continuous addition of 41 ppmw S/HC at T = 1160 K, equivalent ethane conversion 68%). Next to the sequence of the preoxidation and steam pretreatment, also presulfiding was evaluated. The coking results proved that a high temperature preoxidation, followed by a steam/air pretreatment at 1173 K for a duration of 15 min, has the best coking performance under ethane cracking conditions. Thi...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.