Abstract

Despite the great potential of photosynthetic microbes in the production of renewable fuels, value-adding chemicals, and water treatment, etc., commercial utilization of them is significantly hindered by the lack of techniques to accurately monitor the thermodynamic and kinetic characteristics of the <i>In-situ</i> growth of microbes under controlled light illumination for optimal cultivation. Herein, we demonstrated that a newly developed highly sensitive photo-microcalorimetric system successfully captured the impacts of the light wavelength and strength on the thermodynamic and kinetic parameters of the <i>In-situ</i> growth of <i>Rhodopseudomonas palustris</i>, a representative photosynthetic microorganism. To our best knowledge, this is the first time that highly precise microcalorimetry is employed to monitor exam the in-situ growth of photosynthetic microorganisms under controllable photo illumination. We envision this technique can help for the optimization of the growth conditions of photosynthetic microorganisms for scale-up applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call