Abstract

The number and the arrangement of freeze pipes and the energy needed to freeze a certain amount of soil are important factors for the economic success of a freeze project. A thermal design in which these factors are considered is based on the solution of a nonlinear unsteady heat conduction equation including phase transition. The equation is solved by means of a finite-element-method (FEM), considering boundary conditions related to artificial ground freezing.In this paper the basic mathematical techniques to deal with the transient heat conduction problem, with temperature-dependent soil properties, and the release of latent heat are described. The significance of the convective heat transfer coefficient and the temperature distribution in the coolant running through the freeze pipes are shown and their dependencies to other factors as refrigeration plant capacity or type of flow in the pipes are considered. Finally an example is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.